A New Model for Shallow Viscoelastic Fluids
نویسنده
چکیده
We propose a new reduced model for gravity-driven free-surface flows of shallow viscoelastic fluids. It is obtained by an asymptotic expansion of the upper-convected Maxwell model for viscoelastic fluids. The viscosity is assumed small (of order epsilon, the aspect ratio of the thin layer of fluid), but the relaxation time is kept finite. Additionally to the classical layer depth and velocity in shallow models, our system describes also the evolution of two components of the stress. It has an intrinsic energy equation. The mathematical properties of the model are established, an important feature being the non-convexity of the physically relevant energy with respect to conservative variables, but the convexity with respect to the physically relevant pseudoconservative variables. Numerical illustrations are given, based on a suitable well-balanced finitevolume discretization involving an approximate Riemann solver.
منابع مشابه
A New Approach for Solving Heat and Mass Transfer Equations of Viscoelastic Nanofluids using Artificial Optimization Method
The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a c...
متن کاملUnified formal reduction for fluid models of free-surface shallow gravity-flows
We propose a unified approach to the formal long-wave reduction of several fluid models for thin-layer incompressible homogeneous flows driven by a constant external force like gravity. The procedure is based on a mathematical coherence property that univoquely defines one reduced model given one rheology and one thin-layer regime. For the first time, as far as we know, various known reduced mo...
متن کاملThe Material Point Method for the Physics-Based Simulation of Solids and Fluids
OF THE DISSERTATION The Material Point Method for the Physics-Based Simulation of Solids and Fluids by Chenfanfu Jiang Doctor of Philosophy in Computer Science University of California, Los Angeles, 2015 Professor Demetri Terzopoulos, Co-chair Professor Joseph M. Teran, Co-chair Simulating fluids and solid materials undergoing large deformation remains an important and challenging problem in Co...
متن کاملCalculation of tunnel behavior in viscoelastic rock mass
Wall displacements and ground pressure acting on the lining of a tunnel increase with time. These time-dependent deformations are both due to face advance effect and to the time-dependent behavior of the rock mass. Viscoelastic materials exhibit both viscous and elastic behaviors. Thorough this study, the effect of different linear viscoelastic models including Maxwell, Kelvin and Kelvin-Voigt...
متن کاملA New Method for Improving Computational Cost of Open Information Extraction Systems Using Log-Linear Model
Information extraction (IE) is a process of automatically providing a structured representation from an unstructured or semi-structured text. It is a long-standing challenge in natural language processing (NLP) which has been intensified by the increased volume of information and heterogeneity, and non-structured form of it. One of the core information extraction tasks is relation extraction wh...
متن کامل